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Abstract

E-Commerce Age needs revenue accounting, oriented toward serving information needs of managers
and investors in planning and controlling a firm's sales activities and their financial consequences. We wish
to show the revenue accounting proposed in Glover and Ijiri (2002) extended to Markov processes and
dynamic programming to gain insight into their processes. In this paper, Markov process was used as a way
of capturing the customer transitions and related impact of the corporate profit. We incorporate the
possibility of the firm having alternative policies under which transition probabilities and payoffs may be
altered, along with an algorithm for an optimal selection of the policies that maximize the long-term profit of

the firm.
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1. Introduction

1.1 Revenue Accounting in Contrast to Cost Accounting:

During the last decade, we have seen a shift from product-orientation in the Industrial Age to
customer-orientation in the E-Commerce Age. As the Industrial Age needed cost accounting, the E-
Commerce Age now needs revenue accounting, oriented toward serving information needs of managers
and investors in planning and controlling a firm's sales activities and their financial consequences. Glover
and jiri (2002) developed a conceptual framework for revenue accounting including tentative postulates of
revenue accounting and an analytical framework focusing on revenue mileposts, revenue momentum and
sustainability measurements, and intangibles capitalization. Traditional accounting has a large network of
cost accounts involving many processes and departments. Yet when it comes to revenues, accounting starts
with revenue realization and ends with cash collection, with not many layers of accounts as we see in cost
accounting.

In particular, Glover and jiri emphasized "revenue milestones" and capture the transition of
customers among many states probabilistically. Here a Markov process was used as a way of capturing the
customer transitions and related impact of the corporate profit.

1.2. Markov Processes with Payofls

Glover and Ijiri (2002) discusses revenue mileposts and a customer transition between the
"browser" state and the "buyer" state by means of a transition matrix. Furthermore, taking advantage of
Howard's (1960) model that incorporated a payoff matrix, after each transition of the customer, a payoff
amount is assigned depending upon from which state i to which state j the customer moved, including the
case i = j, the customer staying at the same state. Providing that the transition matrix is regular, the output
of the analysis is that, after a large number of transitions, the probability that the customer is in state i
converges to a constant and the payoff the firm can expect from the customer in each transition converges
to a constant. In the following, we shall limit our attention to only regular Markov matrices. Non-regular
ones are either cyclic or non-ergodic, both of which can be analyzed building upon a set of regular
matrices. |
1.3. A Browser-Buyer Example

Here, we quote from Glover and Ijiri (2002) with minor modification. "If a customer was a
browser in the previous period and is also a browser in the current period, designated by
"browser/browser", the cost to the firm is $2 (a -$2 payoff) in the current period, while if s/he was a
browser in the previous period and a buyer in the current period (browser/buyer), the benefit to the firm is
$3 (a payoff of $3) in the current period. On the other hand, if a customer was a buyer in the previous
period and is a browser in the current period (buyer/browser), the cost to the firm is $1 (a payoff of -$1),
while if a customer was a buyer in the previous period and is also a buyer in the current period
(buyer/buyer), the bepefit to the firm is $9 (a payoff of $9). These payoffs along with transition
probabilities, which will be explained shortly, are depicted in Figure 1 and summarized in Table 1 in the

form of a payoff matrix and a transition matrix.
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We now move on to the transition matrix in Table 2. If a customer was a browser in the previous
period, there is a .8 probability that s/he will stay as a browser (with no purchase) in the current period and
a .2 probability that s/he will become a buyer (with a purchase) in the current period. On the other hand, if
a customer was a buyer in the previous period, there is a .4 probability that s/he will become a browser
(with no purchase) in the current period and a .6 probability that s/he will stay as a buyer (with a purchase)

in the current period (Glover and ljiri 2002, p. 46.)"

Figure 1: Transition Diagram with Payoffs and Probabilities

Browser Buyer

-$2; .8 $9; .6

-$1; .4

The expected payoff given the customer was a browser in the previous period is computed as
-$2*.8 +$3*.2 = -§1 and the same for a buyer is -$1*.4 + $9*.6 = §5, as shown in the last column. (Only

the expected payoff will be needed in the future computations and not the payoff matrix.)

Table 1: Payoff Matrix and Transition Matrix

Payoff Matrix Transition Matrix Expected

Browser Buyer Browser Buyer Payoff
Previous Browser -$2 $3 .8 2 -$1
Period Buyer -$1 $9 4 .6 $5

2. An Extension to Dynamic Programming

2.1. Advertising and Discounting Options

We now want to go further to incorporate, as shown in Howard (1960), the possibility of the firm
having alternative policies under which transition probabilities and payoffs may be altered, along with an
algori{hm for an optimal selection of the policies that maximize the long-term profit of the firm.

Suppose that the firm has an advertising plan that changes the transition probability for a browser
from the current (.8 .2) to (.7 .3) but the expected payoff will be worsened from the current -$1 to -$3 as a
result of the advertising cost. Similarly, the firm has a discounting plan that changes the transition
probability for a buyer from (.4 .6) to (.3 .7), thus improving the repeat purchase rate and increasing the
expected payoff from $5 to $6 as a result of price-cut and increased demand. (This is an obvious winner

compared with the status quo, since the transition probability to the favorable state is improved without
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sacrificing, actually improving, the payoff.) The two plans need not be introduced simultaneously.
Furthermore, the algorithm allows many different plans to be considered for each state, say 2 plans for a
browser and 3 plans for a buyer. For simpler illustration, we shall consider only one new plan for each
state along with the current plan as shown in Table 2. The firm wishes to maximize, not the immediate
payoff for the current period but, the long-term profit that takes into account the impact on the future

transition and the future payoffs.

Table 2: Advertising and Discounting Options

Transition Expected Immediate
State (Choice) Options Probabilities T Payoffs w
1. Browser a: Non-advertising (.8 .2) -$1
(aorb) b: Advertising (7 3) -$3
2. Buyer c: Non-discounting (4 .6) $5
(cord) d: Discounting 3.7 $6

2.2. The Policy Iteration Process

In the interest of quickly showing the policy iteration process to get an optimal solution, we shall
show the steps in the simplest term, deferring explanations to Sections 2.4.~2.8. The process has 4
components as shown in (1) below, where the policy iteration takes place between Step 1 and Step 2 until
a certain condition is met, at which time the process ends.

¢)) Start ----> Step 1 <===> Step 2 ----> End

a) Start by Setting T, w, and v: We shall use T" to mean the matrix consisting of all optional transition

vectors and w” to mean the expected immediate payoff vector of all optional payoffs in Table 2, namely,

8 2 -1
7 3 -3 ,

™ = 46 and w" = s | Then the starting transition matrix T and the expected immediate payoffs w
3.7 6

are created from T and w” by choosing, for each given state, the alternative that has the highest expected
immediate payoffs. If there is a tie between two best options for the same state, we choose the one that
appeared in the previous policy iteration, if any. Otherwise, we choose any option with the highest value.
For browser, non-advertising (-$1) beats advertising (-$3) and for buyer, discounting ($6) beats
non-discounting ($5). Hence, T and w looks as shown in (2). Here, we also use v to mean the expected
total payoff vector, which includes the expected immediate payoffs and all the expected payoffs to occur in

the future. We set v = w initially.

88 2 -1
2) T= andw=v= .
[.3 .7} [ 6 ]
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b) Step 1, Update v: The policy iteration starts by creating I-T and then replacing the last column of I-T
with a unit column vector e = [l} (the reason is to be explained later). This matrix is called U and we take
the inverse of U as shown below.

3 I-T=
® 6 4

2 =2
, hence U =
-3 3 }

2 1 L 2 =2
and U = .
31

Using v' to mean the updated value of v for use in the next policy iteration, we determine v' from v and U™

o o)lo) i)

c) Step 2, Update T and w: Here, we denote by v° a vector obtained from v' by replacing the last element

by:

4) vi=Ul=

in v' with a zero which is signified by the superscript 0, thus obtaining [ ] for the above example.

Finally, we derive the test quantity u as:

-1 [8 2 ~12.2
- v et |30 17 3|14 |28

51 |4 6f|o0 -6

6| |3 7 1.8

Keeping in mind that the first two rows are for options used for the browsers and the last two rows, for the
buyers, we update T and w by selecting the best values in u for each state. Thus, for browsers, non-
advertising (-$12.2) is better than advertising (-$12.8); and for buyers discounting ($1.8) is better than non-
discounting (-$0.6). We create T" and w', i.e. updated T and w, using choices made in (5) from T" and w"
for the next round of the policy iteration.

d) End if T'=T and w' = w: If T'= T and w' = w, then we stop the policy iteration. Otherwise, we go back
to Step 1. In this example, choosing non-advertising and discounting was exactly what we did in the
previous round, thus T' = T and w' = w. This signals the fact that no more improvements are available and

the policy iteration stops here.

2.3. A Modified Example
While the policy iteration ended after the first try, this is not always the case. To illustrate, it is
interesting to see what happens if we reduce the advertising cost by $1, thus improving the expected

immediate payoff associated with the advertising option from -$3 to -$2, shown by a * in Table 3.
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Table 3: Advertising and Discounting Options (Modified)

Transition Expected Immediate
State (Choice) Options Probabilities T Payoffs w
1. Browser a: Non-advertising (8 .2) -$1 :
(aorb) b: Advertising (.7 .3) -$2* (modified)
2. Buyer c: Non-discounting (4 .6) $5
(cord) d: Discounting (3.7 $6

Then, the option selected initially is the same as before, non-advertising (-$1) and discounting ($6). T' (=T)
and w' (=w) are thus unchanged. Hence, all derivations stay the same until the iteration process comes to

(5), whose second element of w, marked by a *, is changed from -$3 to -$2 as shown below:

-1 8 2 -12.2
o |-2* |7 3)[-147 |-118
6) u=w'+TV" = + = .
5 4 6 0 -.6
6 3 .7 1.8

As a result of this change, the next policy iteration changes from the previous "non-advertising
and discounting" to "advertising and discounting” as advertising (-$11.8) now beats non-advertising (-

$12.2). Then, the iteration generates:
g3 -2
@) T= andw = .
3.7 6
3

(8) T= |

- .3}
, hence U =
3

3 1] ; [5/3 -5/3}
and U = .
-3 1 5 5

We then obtain an updated v' from v and U by:

1 5/3 -=5/31[-2 -40/3
9 vi=U'v= = .
5 5 ] [6] [ 2 ]

We now compute u as:

-1 8 2 -35/3

. |-2| |7 3|[-40/3]1 [-34/3

(10) u=w'+TWV" = + = .
5 4 6 0 -1/3
6 3 .7 2

This shows that "advertising and discounting” should be chosen. But this is the same as the options chosen
in the previous policy iteration. Hence, the iteration stops. (It is suggested to try other variations in

payoffs.)
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2.4. Explanations for the Iteration Process

Explanations of the policy iteration process and a proof that the above process does yield an
optimum solution is given in Howard (1960, chapters 2~4). We simplified the explanations of the policy
iteration process by incorporating all key elements of iteration in "composite" vectors and matrices. We
must now, however, explain the reason for the insertion of a unit vector in T's and setting of the last
element of v equal to zero.

For this purpose, we use as an example the particular T and w given earlier by:
8 2 -1
) T= andw=v= .
3 .7 6
We define v(n) to be the value of v if the Markov iteration process is to terminate n periods from now, and
apply the backward Markov iteration starting with n = 0.
A caution at this point might be in order since we have two kinds of iterations involved here. The
policy iteration process discussed earlier in Section 2.2 changes the values of T, w, and v at its each

iteration. The Markov iteration process to be discussed here involves iterations under given T, w, and v,

chosen at a particular round of the policy iteration.

2.5. Backward Markov Iterations

Table 4 below shows how v(n) changes as the Markov process moves backwards, along with

Figure 2 which depicts the data in the second and the third columns of Table 4. At n = 0, the system has

0
ended and has no more payoffs to generate, hence v(0) = [O] . This means that at n = 1, only the expected

immediate payoff w = v(1) = [ 6 ] is available. At n = 2, the system will have Tv(1) from the operation in

-1 88 21[1-1
n = 1 plus the expected immediate payoffs of w, thus v(2) = w + Tv(1) = [ 6 } + [3 7] [ 6 ] =

-.6
, Or in general we have:
9.9

(11) v(n) = w + Tv(n-1).

Let us now examine Table 4 which consists of 3 groups of two columns each, setting aside the
column for n. The first and second columns show the values of v(n) forn =0, 1, 2, ..., 12 for browsers and
buyers and it can be easily verified that the above numbers derived for n = 0, 1, and 2 agree with those in
the table. Thus from the last row, if the system has 12 more periods before its termination, a browser at that
time has the expected total payoffs of $16.001 and a buyer, $29.998, for the firm. (See also Figure 2
below.)

Skipping the next two columns of Table 4 for now, we move to the last two columns of the table

that show the amount of increment over the previous period computed for browsers and for buyers. As

9
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clearly shown in the table, the increment converges to $1.80 regardless of whether the customer starts out
as a browser or as a buyer. The convergence is assured by the property of regular Markov processes, no
matter which state the customer starts from. We let g to mean this limit amount of payoffs $1.80 that will

be repeated in each period regardless of the state, namely it is the "state-independent payoff."

Table 4: Values of v, and Av, after Each Backward Markov Iteration

---- Value v(n) ----- ---- Relative Value v’(n) ---- ---Av(n)=v(n)-v(n-1) =g ---
n Browser Buyer Browser Buyer Browser Buyer
0 0 0 0 0
1 -1 6 -7 0 -1 6
2 -0.6 9.9 -10.5 0 0.4 39
3 0.5 12.75 -12.25 0 1.1 2.85
4 1.95 15.075 -13.125 0 1.45 2.325
5 3.575 17.138 -13.563 0 1.625 2.063
6 5.288 19.069 -13.781 0 1.713 1.931
7 7.044 20.934 -13.891 0 1.756 1.866
8 8.822 22.767 -13.945 0 1.778 1.833
9 10.611 24.584 -13.973 0 1.789 1.816
10 12.405 26.392 -13.986 0 1.795 1.808
11 14.203 28.196 -13.993 0 1.797 1.804
12 16.001 29.998 -13.997 0 1.799 1.802
Limit h =-14.000 g =1.800 g =1.800

2.6. Relative Values and Asymptotes

The middle 2 columns of Table 4 which are yet to be explained are the column of v,°(n) = vy(n) -
va(n) for browsers and vzo(n) = vy(n) - v(n) = O for buyers. By the definition of the superscript 0, values
are expressed relative to the value of the last state. For optimization purposes, it is not necessary to keep
track of v(n)'s for each and every state in the system. We can set v; for any state i equal to zero, expressing
payoffs for all other states as "relative payoffs," compared to the selected state's payoffs. For example, we
can set the payoffs for buyers equal to zero and state the relative payoffs for browsers, which is what is
shown in the middle 2 columns in Table 4. As evident from the table, this relative payoffs, denoted by h,
for browsers converge to -$14.00.

We also note from Table 4 that v(n) approaches the two asymptotes shown in Figure 2. The lower
line is for browsers and the upper line is for buyers. The asymptotes intercept with the y-axis at -5.6 for
browsers and at 8.4 for buyers. The slope of both asymptotes are 1.8 per each increment in n, the Markov
iteration number. The two asymptotes are expressed as Equation (12) below which form good
approximations to v(n) for any large n.

> L _[L80] [-56
v = (S =
(12) (m) = nge +v [1.8n} {8.4}’

where e is a unit column vector and v is a vector of constants indicating the intercepts of the asymptotes.

10
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Figure 2: Values of v(n) for n =0, 1, ..., 12 in Table 4 and Their Asymptotes
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The optimization routine attempts to maximize (12), as after a large enough number of iterations,
any errors from this use of asymptotes diminishes. In this way, the optimization process involves only
linear functions, hence the above policy iteration process does lead to the optimum solution.

The constants in (12) can be explained using the property of regular transition matrices that can be
decomposed into the permanent part and the transient part. In particular, the transition matrix T in (12) can
be stated as:

s o 6 4 osn] 4 — 4]
(13) _[.6 .4} ('){-.6 6 |

. 10 . [6 4 J4 -4 [8 2
Note that for n =0, T° = and for n=1, T' = +(.5) = as it should
01 6 4 -6 .6 3 .7

be. If we multiply T" by the expected immediate payoff vector w, we obtain:
6 4]1[-1 4 -41[-1 1.8 -2.8]

(14) T'w = +(.5)" = + (.5)" .
6 4(]|6 -6 6 6 1.8 4.2

. 0 1 -2.8 -2.8 -5.6
The transient component summed fromn=0to o is (5" +.5 +..) 42 =2 42 = g4 |’ hence

the meaning of the constants in (12) becomes clear.

2.7. Composite Matrix U and Composite Vector v®
We now explain the reason for the composite matrix U used in Section 2.2. Assuming that n is

large, we equate Equations (11) and (12) as follows.

11
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(11) v(n) = w + Tv(n-1),
12) v(n) = nge + v, which also means,
(15) v(n-1) = (n-1)ge + v.

Hence putting (15) into the right-hand side of (11), we obtain:
(16) v(n) =w + T[(n-1)ge + v] = w + [(n-1)g]Te + Tv=w + (n-1)ge + Tv,
for Te = e because T is a transition matrix whose each row sums to 1.
Equating (12) and (16), we have:
amn nge + v=w + (n-1)ge + Tv,
thus, transferring (n-1)ge + TV to the left and simplifying, we obtain:
(18) (I-T)yv+ ge=w.
We now show that:
19) (I-T)v + ge = Uv¥,

where U is (I-T) whose last column is replaced by a vector of all 1's and v® is the vector v whose last
element is replaced by g. Remembering that we focus on the relative values in v, relative to the value of the

last element which is, therefore, set equal to zero. The equality in (19) should be clear from the 3x3 matrix

below:
all a1z a3} [wv1 g all a1z 1} [w1
(20) a21 a22 a23| |v2| +|{g|=[a21 a22 1| |v2].
a3 a32 as33| |0 g| a3 a3 1j|g

Thus (18) is equivalent to:
(21) Uvé=w.

In this way, when (21) is solved for v® by multiplying both sides of (18) by U, we see that the
solution is obtained indeed by v& with all solutions obtained in one matrix inversion:

(22) vE=Ulw.

We said earlier that the optimization process was carried out to maximize:

(12) 1.8n -5.6
v(n)=nge +v= + ,
(=18 1.8n| " | 8.4
but actually it was carried out to maximize:
’3 1.8n -14
\Y% = +vs= + ,
(23) (n) = nge 1.8n 0

12
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since as mentioned earlier in Section 2.6 the constant term that is common to all states, 8.4, is irrelevant to
the optimization process. We have postponed this point until now to avoid the need to define another

variable.

2.8. Interpretations

We can now interpret v = [ 3 } obtained in (4) which is also shown in the last row of Table 4.

Its first element (-$14) is h which is the relative payoff, the expected total payoffs if the system started
from the first state, the browser in comparison to the buyer. The second element ($1.8) is g which we
discussed earlier in Section 2.5 and indicates the state-independent payoff per each transition after the
system has been run for a sufficiently large number of times.

Equation (5) then shows the test quantity u computed as the sum of the immediate payoff w and
the total expected payoffs in the future.

Also after changing the payoff under advertising from -$3 to -$2, we find in (9) that the expected
total payoff after starting in the first state is -$40/3, while the state-independent payoffs is $1.8. Then, the
test quantity is computed in (10) and the best options are chosen as "advertising and discounting." This

choice is repeated at the next round and the iteration stops as we saw before.

2.9. Optimization and Sensitivity Analyses

The above analysis indicates that Markov processes have been enriched greatly by the
introduction of payoffs, options, and dynamic processes. Sensitivity analyses can be carried out as an aid to
policy and strategy decisions. The value data such as v and g gives management a base to determine
maximum or minimum offers they can make to let the system starts at a preferred state such as the "buyer"
state instead of a less preferred state such as the "browser" state.

Although the above process does not consider the time value of money, it can easily be
incorporated. For example, knowing the value of the state-independent payoff g per iteration and the
interest rate r per iteration period, the present value of future cash flows may be determined as g/r focusing
only on the state-independent component. It can then be fine-tuned by incorporating the state-dependent
values v.

2.10. The Duality

We now consider the duality of the dynamic programming system discussed in the above. It is
clear that the above optimization method can be applied intact to the transition matrix along with options
and payoffs. Options that may be considered include an introduction of a higher quality process that
produces more preferred output, a cost saving process that improves yield, sub-contracting, etc.

To search for an optimum method of going backwards does make sense if the underlying
production process is time-reversible. Even in cases where this is not the case, a backward search for
optimum can make sense when we wish to find a minimum cost to produce a given amount of output, to

allocate revenues back to the original process that are responsible for their production, or to reverse-

13
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engineer, for example, a product mix that will meet certain conditions. This indeed explains the enormous
power of dynamic programming.

The policy iteration method discussed above obviously assumes that options represented by each
row of T* and w” can be picked up independent of each other and assembled in a meaningful way. For
example, in our illustration using the browser-buyer example, we had non-advertising and advertising
options for browsers and non-discounting and discounting options for buyers. We assumed that the choice
of option we make for browsers does not affect the choice we make for buyers. This may not always be the
case in practice, since, for example, a decision to advertise may not be implemented just for browsers and a
decision to discount may not be implemented just for buyers. If this is the case, some creative ways of

rethinking about options and states in the transition matrix may be required.

3. Conclusions

In this way, we have extended revenue accounting proposed in Glover and Ijiri (2002) into
Markov processes and dynamic programming models. The application of Markov processes and dynamic
programming is a convenient tool to find the solutions that maximize the expected total payoffs. As
already mentioned in section 2.1, the algorithm introduced in this paper is applicable for multiple options
for each state. The algorithm also allows different number of plans to be considered for each state. In other
words, we may apply this methods to the situation where we have more than three states and more than

three different options. In this paper, we described the simplest example for the illustration purposes.
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